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Phase separation in the spherical model 
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OX1 3TG, UK 
f Laboratoire de Physique ThBorique, Ecole Polytechnique FBderale, Lausanne, 
Switzerland 

Received 17 October 1979 

Abstract. The spherical model in an inhomogeneous external field is investigated. It is 
shown that whenever there is a phase transition, the phases do not separate. This, together 
with decoupling effects in the magnetisation profile as well as in the transverse correlation 
functions, suggests abnormally large fluctuations and strong field dependence. These are 
confirmed by the study of symmetry-breaking fields acting on portions of the boundary. 

1. Introduction(( 

The spherical model is the only exactly soluble model of magnetism exhibiting a phase 
transition in three and higher dimensions (Y 3 3) (Berlin and Kac 1952). Considering 
this, it is surprising that, compared for example to the two-dimensional Ising model 
(Abraham and Reed 1974, 1976), little is known about phase separation in the 
spherical model. The purpose of this article is to investigate this problem in detail by 
studying the magnetisation profile, the transverse correlations and the effects of 
symmetry-breaking fields acting on portions of the boundary. 

There are several arguments indicating that dimensionality should play a decisive 
role in the problem of phase separation in lattice or fluid systems. As first noted in the 
Ising case (Burton et aZ1951), the spin layers next to the interface, which are decoupled 
at T =0, fluctuate strongly as T approaches the value Tby-l), and this leads to a 
roughening transition in three dimensions. 

It was noted next, using spin wave arguments (H Kunz, private communication), 
that the energy required to deform the surface by an excitation of wavelength L is 
proportional to L”-3. Stanley’s limit (Stanley 1968) connecting the spherical model to 
d-dimensional vectorial-spin models, together with Berlin and Kac (1952), then 
supports the conjecture that a phase separation should occur in the spherical model only 
in four or higher dimensions. 

Lastly, Onsager’s and Temperley’s model for lattice gas interfaces (Temperley 
1952, Abraham and Heilmann 1976) and the simple drumhead model of a fluid 
interface also exhibit a similar dimensional effect (Widom 1972). 

Nevertheless, we have found that in fact dimensionality plays no role in phase 
separation in the spherical model. It turns out that phases do not separate in any finite 

I To whom requests for reprints should be sent. 
11 A preliminary account of some of these results was given in Abraham and Robert (1979). 
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2230 D B Abraham and M A  Robert 

number of dimensions. As we will demonstrate, this surprising result is due to the 
presence of abnormally large fluctuations. 

However, the spherical model does exhibit physically interesting decoupling effects 
in the magnetisation profile and in the two-point transverse correlation function. As far 
as we know, these have not been observed previously in an exactly soluble model. 

2. Solution of the model 

Let there be Kd-dimensional continuous spins si on a finite subset A c Z”. The 
interaction energy V of a spin configuration SA E ( iWd)* on A is taken to be 

V ( S J  = - B(i -i)sls, - c h,s,, 
I , /  E A I E A  

1 # /  

where h, E R is the exterior field acting on the spin s,. The probability of a spin 
configuration SA on A is given canonically by 

P A ( s A )  = 2,’ ~xP[-Pv(sA)I, (1) 
where 

Z,, = I ( n ds,) exp(-pV,d 
I E A  

is the corresponding partition function and P = l/kBT, with T the absolute temperature 
and k B  Boltzmann’s constant. 

In the spherical model, originally introduced as a continuous approximation to the 
Ising model (Berlin and Kac 1952), d = 1 and the local restriction that s? = 1, s, E Z, Vi, 
is relaxed to the global spherical one 

c s ? = K  
i E A 

where each spin variable si can now assume any real value compatible with (2). 
Defining for any subset A of A 

the si being elementary spins, we will be interested in the expectation value of sA with 
respect to (1) i.e. the function 

The spherical condition is most conveniently imposed, following Berlin and Kac 
(1952), by means of an integral representation of the ‘delta function’. Equation (4) then 
becomes 
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where 

with 

s = (Sl, . . . , S N )  h = ( h i , .  . . , hN) 

B~~ = -;P$~+ + zsii = -;KA~-~ + zsii 
for K = P$ and A = J/$. 

The interchange of limits in going from ( 5 )  to (6 )  is allowed provided that all 
eigenvalues of B are positive when z = a ; clearly a real a can be chosen such that this is 
true. 

The matrix A is real-symmetric and can therefore be reduced to a diagonal form A 
by an orthogonal transformation V, i.e. 

sTAs = s ’~As‘ ,  

where s = Vs’ with real V satisfying VTV = 1. Thus (7) becomes 

with the transformed fields 

y, = 1 v,hi .  
i 

Finally the change of variables 

reduces (9) to the standard form 
N 

1-m j = 1  

+m +m 

ds$. . . ds;‘ exp( - sY2) FA (2) = F4 (2) ‘?7-“‘” 

!A [;I v i j ( 2 ~  - Yi KAj + +)I, z -3KAj 

with 
2 

F~(Z) = rN” exp 1 y i  -fln(z-fKAj))]. 
[ j : ~  (22 - KAj 

Consider two simple examples. 

(i) Take A = p E A ;  then 

(ii) Take A = ( p ,  q )  E A X  A; then 
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These expressions are quite general for the spherical model with arbitrary one- and 
two-body potentials. 

It remains now to find the matrix V which is appropriate for the problem, i.e. we 
must define boundary conditions for A as well as an exterior field h which are suitable 
candidates to induce phase separation. To simplify matters, we shall turn our problem 
into a one-dimensional one by choosing A to be periodic in v - 1 dimensions, leaving the 
top and bottom sides free in the last direction; correspondingly the exterior field will be 
chosen to act equally on all spins of each (v-1)-dimensional toroidal layer, being 
positive in the upper half A' of A and negative in the lower half A-. Note that this global 
field h plays the role of the gravitational field in the liquid-vapour separation. On the 
middle layer, for simplicity, the field will be taken to be zero. 

Equally well, phase separation could be induced by means of a boundary field acting 
only on the boundary spins of A .  A would then be a hypercube instead of a hyper- 
cylinder. For technical reasons, only the latter case has been studied in some detail for 
the Ising ferromagnet using rigorous methods; but it can be shown, using duplication 
arguments, that as h -+ 0 the phase separation phenomena should be the same (Abra- 
ham and Issigoni 1979). There is no good reason, however, to assume the same for the 
spherical model, as should become apparent in the next sections. 

In our case we thus obtain figure 1. In this case, the matrix V which brings A into 
diagonal form factorises into: 

where Vb) and V" are the matrices which diagonalise a one-dimensional cyclic and open 
chain respectively. Correspondingly, the eigenvalues in the periodic hyperplane add 
up. Diagonalisation in the latter leaves us with a non-cyclic Toplitz matrix which is 
easily diagonalised in the case of nearest neighbour vertical couplings. 

A+ 

A-  

I *h 
0 

Figure 1. The boundary conditions for ,I and the global inhomogeneous symmetry- 
breaking field h. 

The matrices are the usual Fourier transforms, given in normalised real form 
by 
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with 

= 1,.  . . , M, i = l , .  . . , v - 1 .  

The normalised matrices v!k are found to be (see appendix A) 

v!k = [ 2 / ( ~  + I)]‘” sin wz,  (14) 

where 

w = k.ir/(N + l ) ,  k = 1 , .  . . , N .  

In the case of isotropic nearest-neighbour couplings, the eigenvalues of V41,1 and the 
parallel component of the transformed fields y; are respectively given by (see appendix 
A) 

”-1 

1 = 1  
Ad., - - 1 cos q;) +COS w 

h [ 2 / ( N +  l)]’” cot (w/2) j odd 
y j = I 0  j even. 

Following Berlin, the integrals in (6) are carried out using the method of steepest 
descent. The saddle point equation reads 

W$’ (3) + Hk’ (8) = 2 K  (16) 

where 
- 1  W B ‘ ( ~ ) = > E ( ~ -  1 2 cos,> 

j = l  

and 

with g = r /K.  

into the usual saddle point equation (Berlin and Kac 1952, appendix C). 

N, M+co with Reg  > Y and h > O .  

We note that in the absence of an exterior field, H k )  (8) = 0, and (16) just turns back 

We first discuss the behaviour of equation (16) as we take the thermodynamic limit 

The sum W$’(g)  in (17) then turns into the ubiquitous Watson function 

(18) 
1 2 T  1 ” 2.ir 

W ( ’ ’ ( g ) = ( r )  .ire [ dq,. . . Io dq1 ,-cy,, cosq;’ 

whereas the field term becomes (see appendix B) 

H‘”’(g) = 8 h 2 / ( g  - v)’. (19) 

The close relationship (18) bears to the recurrence problem in the random walk is 
well known (Joyce 1972). For g > v, the Watson functions are monotone decreasing in 
g; a small angle analysis readily shows that whereas for Y = 1, 2, W‘”’(g = v) diverges, 
for v 2 3, W(’)(g = v )  remains finite. (The case v = 3 has been performed analytically by 
Watson (1939).) It then follows from (16) that for h = 0 the spherical model has a phase 
transition in three dimensions or more, the critical temperature being given by 
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2KfY’ = W(”’(8 = v). If h were 0, then we would have the usual ‘sticking’ of the saddle 
point at 3 = v for any K 3 W‘”’(3 = v), i.e. for any T s T,. But for h # 0, equation (16) 
shows that 3 never reaches the value v so that a normal saddle point always exists at any 
temperature and there is no phase transition. 

Now for K < KfY) and letting h + 0 the normal saddle point of the homogeneous 
phase is obtained, but if K 2KfY’ the saddle point equation (16), together with (19), 
reads 

showing that 8 sticks again at v as h + 0, as it should. 

3. Results (global fields) 

3.1. The magnetisation profile 

Together with (11) and (15), the expression for the magnetisation density of the pth 
layer, -N’G p s N’(N’  = ( N  - 1)/2, see figure 1) is obtained by letting p go to p + 
( N +  1)/2, and reads (see appendix A, 9 A.2) 

h 1  
(21) 

sin pw N - 3  c cot( ;). ( S . r L , p ) N  = ( S p ) N  = 2- - K N + 1  U g - ( v - 1 ) - c o s w  
w = j r / ( N  + 1 ) 

J - 2 [ 4 ]  

We assume 4 divides N - 1, so N - 3 = 2 [4]. 
As N + CO, this gives the following profile: 

( s p )  = (sgn p)m(h ,  p)(1 
where 

1 h  
m (h ,  p )  = - - 2K 3 - v  

and using (17) 

The derivation uses contour integrations and is given in appendix B. 
Note that as lpI + 03 one recovers from (22) the magnetisation densities of the pure 

phases. For h # 0 ( T  > Tc) the profile has a reasonable exponential behaviour; however 
as h + 0 ( T  s T,) the inhomogeneous effects disappear completely, leaving (sp) = 0 for 
any finite p ,  however small the temperature: the interface is always diffuse, and a 
roughening transition is not observed at any temperature. 

We also find a decoupling effect in the profile: the expression for the upper (lower) 
wing ( s p ) ,  p > 0 ( p  < 0), is exactly the same as the one we find for (sp)  in the case where p 
denotes the distance of the layer from the free side of A, and when A is submitted to a 
homogeneous global field h = h(1,  . . . , 1) ( h  = - h ( l ,  . . . , 1)). This is readily checked 
by computing the corresponding expression for y (see appendix A, 9 A.2). (This 
surface effect had been studied as such by Watson (1972) in his review article.) Note 
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that a correction term, which vanishes exponentially with p ,  is added if the inhomo- 
geneous field has no zero mid-component. 

It must be said that such a decoupling effect in the profile is not typical, even in the 
absence of a sharp interface. For instance, in the case of the two-dimensional Ising 
model it can be proven rigorously both that the interface is diffuse (Abraham and Reed 
1974, 1976) and that the profile does not decouple (Watson 1968). 

3.2. The moments of the profile 

The moments of the profile are defined by 

where 
m 

L2k = P Z k ( m ( h ,  p)-(G)).  
p = l  

In our case we get, using result (21), 

As h + 0, we have found that 

so 

and the 2kth moment becomes 

Thus each moment diverges like h-*l2 as h + 0. This is an unexpected result in three 
dimensions, if one recalls that the same qualitative behaviour is also exhibited in the 
one-dimensional linearised string model of a two-dimensional interface (Widom 1972, 
p 79), and is probably also obtained for the Onsager-Temperley string model of a lattice 
gas interface (Temperley 1952). Both of these models aim to describe phase separation 
in two dimensions, for which the interface should be rough for any T > 0, as proved for 
the Ising model (Abraham and Reed 1974, 1976). The h-1’2 (g-l”, where g is the 
gravitational field) result may be symptomatic of the case where roughening occurs at 
T=O. 

It should also be noted that both the profile and its moments have a homogeneous 
form which is compatible with scaling theory (Widom 1972), with vo as inverse 
correlation length: uo is a homogeneous function of h and t = I(T- Tc)/Tc1. 
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3.3. The pair correlation function 

Together with (12), the expression for the two-point correlation function between two 
spins located at sites x and y takes the form 

(sxsy) = (sx)(s,>+fz(lx -Y I) 
where 

But fZ(r) is just the truncated correlation in a pure phase. So for two points x -L (x, p ) ,  
y = ( y ,  p )  belonging to the same layer p we have, taking x = 0 by translational invari- 
ance, 

i.e. a slab of matter at height p behaves as though it were taken from a homogeneous 
phase of magnetisation ( s p )  lying between the extreme values. Although not expected 
to hdld rigorously (as suggested by Davis and Scriven (1978) for fluids close to the 
one-phase region), such a decoupling effect has, however, frequently been used as a 
procedure by numerous workers in approximate theories (e.g. Brown and March 1976). 
To our knowledge, it is the first time it comes out of an exactly solvable model. 

4. Local symmetry-breaking fields 

The absence of phase separation at low temperatures indicates the presence of strong 
correlations besides the usual ones, which, together with the continuous nature of the 
spins, lead to abnormally large fluctuations of the ordered clusters. As remarked in 
Lieb and Thompson (1969), these extra correlations are induced by the spherical 
constraint (2). 

The decoupling effects in the magnetisation profile and in the transverse correlation 
functions suggest that the global field, which splits A into two non-interacting parts A+ 
and A-, is too strong, and motivates the study of the effects of weaker symmetry- 
breaking fields, acting for instance only on the top and bottom free edges of A (see figure 
2 ) .  

A' 

A-  

t h  

-h 

Figure 2. The local inhomogeneous symmetry-breaking field h. The boundary conditions 
are as in figure 1. 
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For such an exterior field, the transformed fields yi = X i  Kihi become 

yi = h (sin N w  -sin w )  

j odd 
-2h sin w j even, 

and since for j even (appendix A, 0 14.2): 

-sin pw j = 2[4] 
sin pw j = 0[4],  v i p  == [ 

we get 

(25) 
2h sin w . sin pw sin w . sin pw 

( sph==(  c w g-(v- l ) -cosw - 1  '" g - ( v - 1 ) - c o s w  
U =  j?i/(N +I) j=O[41 

JE2[41 

For T > T,, contrary to (21), (sp) tends to zero as N + CO, for any finite p .  This is 
because each sum is separately integrable for 3 > v and tends to the same integral as 
N + CO. For T G T,, sticks to v and we shall see that the speed of approach of g to v is 
high enough to permit the exchange of limits N + CO and g + v. However, for g = v, the 
divergence in w 2  in the denominator is balanced by that in p w 2  in the numerator, so that 
both sums are again integrable, yielding (s,) = 0 for p finite as N + CO for any tempera- 
ture. 

This result, together with (21), confirms and generalises the special case of a cosine 
field considered by Langer (1965) and Kac (unpublished). We may also note, bearing in 
mind more recent results on Ornstein-Zernicke systems (Stell 1969 and Theumann 
1970) that the absence of phase separation in the spherical model does not appear to be 
linked to the lack of analytic continuation (or susceptibility divergence), the latter being 
a dimensional effect. This is contrary to Langer (1965). 

In order to see what is going on here, we shall examine finally the effect generated by 
a symmetry-breaking side-field. In other words, we shall consider a local inhomo- 
geneous field acting only on the spins of one of the free layers (see figure 3). 

Taking the field + h to act on the first layer ( p  = l ) ,  the expression for the magnetis- 
ation density ( s p ) ~  of the pth layer now simply reads 

sin w . sin pw c N + 1  g-(v-1)-cosw'  
h 

( S p ) N  2- 

A 

w = j+i/(N + 1 ) 
all j 

Figure 3. The local symmetry-breaking side-field h. The boundary conditions are as in 
figure 1. 
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(i) For T > T,, i.e. for I - (v - 1) > 1, the sum is integrable, so that 

sin w . sin pw 
dw 

~ - ( v - l ) - c o s w  

= h exp(-ap), 
where 

a = Inl[g - (v - 1) + { [ I  - (v - 1)12 - I)’’~] > 0. 

This is a typical surface effect. It may be compared with the corresponding pure 
Ornstein-Zernicke fluid model of the one-dimensional hard cores, for which the 
density profile is known explicitly exhibiting, moreover, oscillations which are not seen 
here on the lattice. 

- (v - 1) = 1 for any T, and some care is required in 
taking the limit N + 03 in (27). For this, let us consider the saddle-point equation for the 
various local fields. The field part Hk’ ( I )  reads in all cases, up to a constant C, 

(ii) For T < T,, however, 

sin2 w c h2 
( N +  1)2 

H S )  ( I )  = c- 
[ I  -(v-  COS w12‘ 

w = j r / ( N +  1 )  
j = 1 ,  ..., N 

It is easy to see that, contrary to the corresponding expression for global fields (17), 
this sum tends to a constant as N + 00, so that the branch cut I = v is reached for h # 0: 
the presence of nonzero local fields does not prevent the system from undergoing a 
phase transition, which is physically reasonable. 

The sum in (28) may be evaluated by contour integration (appendix B, § B.2) to be 
for large N the sum of the terms 

~ ( ~ Z i r ~ ( N + l ) ) ( ~ Z i r : ( N + l j  - 1)-2 

with z z  = *i[2(3 - Y ) ] * / ~  the roots of the equation 5 - (v - 1) -cos w = 0 for large N. 
This shows that the branch cut is approached at a speed of N-’ as N + 03: 

I - v - N - ~ .  (29) 

We now evaluate the sum (26) by contour integration (appendix B, § B.2) and find 

Using result (29), this shows that the effect of the wall propagates undamped 
macroscopically throughout the system: all the layers within a finite distance ( p  finite) of 
the wall are ‘frozen’ to a constant value. Note that this could have also been noticed 
directly in using (29) to exchange the order of limits in (27), finding 

7r sin w . sin pw 
1 -cos w 

dw 

= C h ~ / 2 ,  vp < 00. 
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More surprisingly, the constant value SO to which it tends in the bulk of the system 
( p  + CO) is to be sure nonzero, but has nothing to do with the spontaneous magnetisation 
m*(P). This contrasts sharply with the two-dimensional Ising case, known to be more 
realistic (Watson 1968 pp 133-41). Finally, notice that the magnetisation in the bulk is 
discontinuous at the transition; contrary to the global field case, h has to be kept here 
nonzero, as we have already mentioned. 

These abnormally large effects ( - N )  are to be compared to the normal ones 
(-N"*) exhibited in two dimensions both by the Ising model (Abraham and Reed 
1974, 1976) and the Onsager-Temperley string (Abraham and Heilmann 1976). 

These results show that in spite of the fact that the spherical model has proved to be a 
good reference model for homogeneous properties, it has to be considered with care 
when it comes to inhomogeneous effects. Besides, some anomalous features had 
already been found in other contexts (Barber and Fisher 1973, Widom 1972, p 149). 

Appendix A 

A.1. Diagonalisation of V!k 

In the open vertical direction, although cyclicity is lost, the case of nearest-neighbour 
vertical coupling is easy to solve: the eigenvector problem for a tridiagonal matrix of the 
form 

\ 

reads explicitly 

bz(knll + a z y '  + bz(knll = h ( n ) ~ ( k n ) ,  (AI)  

where z y )  denotes the kth component of the nth eigenvector, 1 S k, n S N. 
The ansatz 

z(kn) = A ( Z : " ) ) ~  + B ( Z ~ ) ) ~ ,  (A21 

together with the boundary conditions 
z g )  = ( n )  

z N + 1  = o ,  
yields 

z:")zp = 1 

with 
+ ~ ( ~ y ) ) ~ + l =  0 

and 

A = -B. 
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The eigenvectors are, therefore, 

and, after e.g. Hansen (1975, No. 15.1.2, p 234), normalise to 

The eigenvalues follow from ( A l )  and (A2), which give 

A'" '=  b(tl" '  +(zi" ' ) - - ' )  i = l o r 2  

= 2 b  cos n-- ( N:l)+a* 

A.2. Expression for the transformed fields 

Together with (14), (10) becomes, up to the normalisation constant, 

iMaking the denominator real, we get 

We drop the term -1 in the numerator since we want finally the imaginary part of this 
number. Using w = j n / (N+ l ) ,  we get 

Now since we have 

j SE 1[4] 
j = 3[4] 
j 0[4] 
j = 2[4] 

jj+l = 

-i 

and 

j = 1[2] 
j = 0[2],  
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it is easily checked that all cases yield pure real values except the case j = 2[4], which 
gives for (A6): 

-2i sin w - (e'" -e-'") = -4' 1 sin w, 

so that, putting things together and using sin w / ( l  -cos w )  = cot (w/2), 

The expression for Vibj when p is shifted by (N + 1)/2 is readily found: 

sinp'w = s i n { [ i ( ~ +  1)*p]o}=sin(jrr/2*pw) 

since w = j.rr/(N + l), and developing, we get 

[ cospw j = 1[4] 
-cos pw j = 3[4] 
i s in  pw j EZ 2[4] * 

sin p'w = 

*sin pw j ZE 0[4] 

Now y, contributes only for j = 2[4], so the product yjVibj which appears in ( s P ) ~  goes 
like 

-cot(iw)(Tsin p w )  = *cot(&) sin pw, PSO, 

which is the result used in the text (21). 
Finally, for a homogeneous field h = (h, . . . , h ) ,  we have to compute using (A5) 

dropping the real terms, which will not contribute, we get 

Now in this case p is not shifted since p = 1 denotes the first (bottom) layer, so 
Vibi=sinpw, l 6 p s N .  

Notice the factor 2 in (A7) which is absent in (A8). However, since the sum (21) 
extends over only half as many terms, this factor cancels in the thermodynamic limit, 
yielding the exact decoupling effect mentioned in the text. 

Appendix B 

The method being essentially the same for all the sums involved, we shall illustrate it by 
working out the details for one of them in § B.l ,  and shall mention in 0 B.2 the features 
specific to the others. 
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R. 1. Evaluation of limN+a H!$) (8) for the local fields 

In order to rewrite the sum (28) as a complex integral, we consider the integral 

f dzfN(Z) (B1) 

for 

f N k )  = "Z)f(Z), 

where 
sin' z 

[g - (v - 1) -cos Z l 2  
f ( z )  = 

and 

gN(z) having simple poles located at z = z j  = 7rj/(N + l ) , j  = 1, . . . , N, we evaluate (Bl )  
by the method of residues. C1 3 {ti} being the contour shown in figure 4, we find: 

1 But since f (z )  is even, $cl = 5 $clUcI and by periodicity of fN(z), (drlur3 = 0 (figure 4); so 
provided we can find upper and lower horizontal lines r2 and r4 on which N-'fN(z) 
vanishes as N + 00, we will have (figure 4) 

z plane 

Figure 4. Poles and contours for the local fields term Hk' (3) .  
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so that 

where 

f k  f zj i = l , .  . . , N ;  k = 1 , .  . . , K 
are the K eventual poles of fN(z)  lying inside r = Ti. In this example, we have 

so that for large Im z, N-’/ fN(z)I vanishes as N + CO, whereas for Im z + -00, IfN(z)I 
already vanishes. 

The poles i k  of ~ N ( z ) ,  i.e. those of f (z) ,  are given by the roots of the equation 

y-(v-1)-cosz = o  
which reads, since y - v 2 0 ,  

:(cos z - 1) = [i sin(z/2)]‘ = [sinh(iz/2)]’ = i(g - v), 

and for large N 

il,’ = zti[2(3 - v)]”’ = i i zo .  

These poles are of order two, and the formula 

d 
dz Res(fN, f k )  =-f~(z)(Z - i k ) ’ I z = i k  

gives for (B2) 
2i(N+ 1) e2ii,(N+l) 

- 
(e2ii,(N+l) - 1y 

The factor N + 1 will drop out in the 1/N limit. 

B.2. The other sums 

B.2.1. H k )  (8) for the globalfield (1 7). Only odd j contribute, so the appropriate kernel 
is 

As N + 00, only the new pole i3 = 0 contributes a residue of -2i(N + 1)/(8 - v)’ 

B.2.2. ( s p )  for the globalfield (21). The kernel is as in § B.2.1; we choose the contours 
as in figure 5 .  As N +CO, gN(t) vanishes on r4 and on r’, for p > 0 (on rk for p < 0), so 
that 

= 2 r i  ReS(gN, o), 
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z plane 

Figure 5. Poles and contours for the global fields magnetisation. 

with 

The residues at 0 and il are respectively 1/(g - v )  and -elPi1/(g - Y). 

checks with (s-,) = - ( s P )  from (21). 

B.2.3. (s,) for the side-field (27). The appropriate kernel is (eZir(N+l)- l)-', as in § B.l .  
The contours r2 and r4 are sent to fa respectively, where g N ( z )  vanishes. The residues 

For p <0, rk replaces r;, and the residues are - l / (g  - Y )  and e-iPi2/(g - Y), which 

at il and 22 = -il are respectively eipil and e-ipil/(ezviilN - 1). 
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Note added to typescript. 

We have just learned that it has recently been shown by C Pfister that the thickness of 
the interface in spin systems with continuous symmetry already diverges at zero 
temperature. 
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